Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Liquid phase diffusion of branched alkanes in silicalite

Identifieur interne : 000B56 ( Main/Exploration ); précédent : 000B55; suivant : 000B57

Liquid phase diffusion of branched alkanes in silicalite

Auteurs : Kader Lettat [France] ; Elsa Jolimaitre [France] ; Mélaz Tayakout [France] ; Daniel Tondeur [France]

Source :

RBID : ISTEX:DE357E5B4F327443768073C601669EEFFB872C97

Descripteurs français

English descriptors

Abstract

This work provides a new mass transfer model based on the Maxwell–Stefan theory, especially adapted to represent adsorbed phase multicomponent diffusion at high‐adsorbent loading. In our model—contrarily to the well‐known model developed by Krishna et al. (Chem Eng Sci. 1990;45:7:1779–1791; Gas Sep Purif. 1993;7:91–104; J Phys Chem B. 2005;109:6386–6396)—the hypothesis that the micropores are saturated does not imply a dependency between the adsorbed phase diffusion coefficients. Experimental liquid phase breakthrough curves of 2‐methylpentane (2MP), 3‐methylpentane (3MP), 2,3‐dimethylbutane (23DMB), and 2,2‐dimethylbutane (22DMB) were measured at 458 K in silicalite. The self‐diffusion coefficients and Langmuir parameters of the different species were determined using binary exchange breakthrough curves. The Maxwell–Stefan diffusion coefficients obtained for the different isomers are in the order D3MP,nc+1 > D2MP,nc+1 ≫ D23DMB,nc+1, and vary between 4 × 10−15 m2 s−1 for 3MP to 6 × 10−16 m2 s−1 for 23DMB. The 22DMB diffusion coefficient is so low that it could not be estimated (the quantity of 22DMB entering silicalite during the experiment is not significant). The model was then validated by comparing experimental breakthrough curves at different feed concentrations and simulations using the independently estimated parameters. Even though the diffusion coefficients of the different isomers vary by one order of magnitude, the agreement between simulated and experimental curves is very satisfactory, showing the good predictive power of our model. © 2010 American Institute of Chemical Engineers AIChE J, 2011

Url:
DOI: 10.1002/aic.12268


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Liquid phase diffusion of branched alkanes in silicalite</title>
<author>
<name sortKey="Lettat, Kader" sort="Lettat, Kader" uniqKey="Lettat K" first="Kader" last="Lettat">Kader Lettat</name>
</author>
<author>
<name sortKey="Jolimaitre, Elsa" sort="Jolimaitre, Elsa" uniqKey="Jolimaitre E" first="Elsa" last="Jolimaitre">Elsa Jolimaitre</name>
</author>
<author>
<name sortKey="Tayakout, Melaz" sort="Tayakout, Melaz" uniqKey="Tayakout M" first="Mélaz" last="Tayakout">Mélaz Tayakout</name>
</author>
<author>
<name sortKey="Tondeur, Daniel" sort="Tondeur, Daniel" uniqKey="Tondeur D" first="Daniel" last="Tondeur">Daniel Tondeur</name>
<affiliation>
<country>France</country>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="laboratoire" n="5">Laboratoire réactions et génie des procédés</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DE357E5B4F327443768073C601669EEFFB872C97</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/aic.12268</idno>
<idno type="url">https://api.istex.fr/document/DE357E5B4F327443768073C601669EEFFB872C97/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001289</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001289</idno>
<idno type="wicri:Area/Istex/Curation">001289</idno>
<idno type="wicri:Area/Istex/Checkpoint">000078</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000078</idno>
<idno type="wicri:doubleKey">0001-1541:2011:Lettat K:liquid:phase:diffusion</idno>
<idno type="wicri:source">HAL</idno>
<idno type="RBID">Hal:hal-00604933</idno>
<idno type="url">https://hal.archives-ouvertes.fr/hal-00604933</idno>
<idno type="wicri:Area/Hal/Corpus">000696</idno>
<idno type="wicri:Area/Hal/Curation">000696</idno>
<idno type="wicri:Area/Hal/Checkpoint">000961</idno>
<idno type="wicri:explorRef" wicri:stream="Hal" wicri:step="Checkpoint">000961</idno>
<idno type="wicri:doubleKey">0001-1541:2011:Lettat K:liquid:phase:diffusion</idno>
<idno type="wicri:source">HAL</idno>
<idno type="RBID">Hal:hal-00497955</idno>
<idno type="url">https://hal.archives-ouvertes.fr/hal-00497955</idno>
<idno type="wicri:Area/Hal/Corpus">000698</idno>
<idno type="wicri:Area/Hal/Curation">000698</idno>
<idno type="wicri:Area/Hal/Checkpoint">000B69</idno>
<idno type="wicri:explorRef" wicri:stream="Hal" wicri:step="Checkpoint">000B69</idno>
<idno type="wicri:Area/Main/Merge">000C81</idno>
<idno type="wicri:Area/Main/Curation">000B56</idno>
<idno type="wicri:Area/Main/Exploration">000B56</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Liquid phase diffusion of branched alkanes in silicalite</title>
<author>
<name sortKey="Lettat, Kader" sort="Lettat, Kader" uniqKey="Lettat K" first="Kader" last="Lettat">Kader Lettat</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut Français du Pétrole, Catalysis and Separation Division, BP 3, 69390 Vernaison</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Vernaison</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Sciences du Génie Chimique, CNRS‐ENSIC‐INPL, 1, rue Grandville, BP 451, F‐54001 Nancy cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jolimaitre, Elsa" sort="Jolimaitre, Elsa" uniqKey="Jolimaitre E" first="Elsa" last="Jolimaitre">Elsa Jolimaitre</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut Français du Pétrole, Catalysis and Separation Division, BP 3, 69390 Vernaison</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Vernaison</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Correspondence address: Institut Français du Pétrole, Catalysis and Separation Division, BP 3, 69390 Vernaison</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Vernaison</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tayakout, Melaz" sort="Tayakout, Melaz" uniqKey="Tayakout M" first="Mélaz" last="Tayakout">Mélaz Tayakout</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>IRCELYON, 2 Avenue Einstein, 69626 Villeurbanne, Cedex</wicri:regionArea>
<wicri:noRegion>Cedex</wicri:noRegion>
<wicri:noRegion>Cedex</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tondeur, Daniel" sort="Tondeur, Daniel" uniqKey="Tondeur D" first="Daniel" last="Tondeur">Daniel Tondeur</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Sciences du Génie Chimique, CNRS‐ENSIC‐INPL, 1, rue Grandville, BP 451, F‐54001 Nancy cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Nancy</settlement>
</placeName>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="laboratoire" n="5">Laboratoire réactions et génie des procédés</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">AIChE Journal</title>
<title level="j" type="alt">AICHE JOURNAL</title>
<idno type="ISSN">0001-1541</idno>
<idno type="eISSN">1547-5905</idno>
<imprint>
<biblScope unit="vol">57</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="319">319</biblScope>
<biblScope unit="page" to="332">332</biblScope>
<biblScope unit="page-count">14</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2011-02">2011-02</date>
</imprint>
<idno type="ISSN">0001-1541</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0001-1541</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Additional constraints</term>
<term>Adsorbent</term>
<term>Adsorption</term>
<term>Adsorption equilibrium</term>
<term>Adsorption processes</term>
<term>Aiche</term>
<term>Aiche february</term>
<term>Aiche journal</term>
<term>Aiche journal february</term>
<term>American institute</term>
<term>Apparent inversion</term>
<term>Axial dispersion</term>
<term>Binary</term>
<term>Binary exchange diffusion</term>
<term>Binary mixture</term>
<term>Binary system</term>
<term>Binder ratio</term>
<term>Breakthrough</term>
<term>Breakthrough curve</term>
<term>Breakthrough curves</term>
<term>Breakthrough experiments</term>
<term>Breakthrough front</term>
<term>Chem</term>
<term>Chemical potentials</term>
<term>Coadsorption isotherm</term>
<term>Coadsorption isotherms</term>
<term>Constraint</term>
<term>Crystal radius</term>
<term>Cstr</term>
<term>Different isomers</term>
<term>Different molar volumes</term>
<term>Different saturation capacities</term>
<term>Different species</term>
<term>Diffusion</term>
<term>Diffusion equation</term>
<term>Diffusion process</term>
<term>Duhem constraint</term>
<term>Entropy effects</term>
<term>Experimental breakthrough curves</term>
<term>Experimental conditions</term>
<term>Experimental results</term>
<term>Experimental setup</term>
<term>February</term>
<term>Feed composition</term>
<term>Generalized langmuir</term>
<term>Genie chimique</term>
<term>Global material balance</term>
<term>Hexane isomers</term>
<term>Imsl library</term>
<term>Isomer</term>
<term>Isotherm</term>
<term>Jolimaitre</term>
<term>Krishna</term>
<term>Langmuir</term>
<term>Langmuir isotherm</term>
<term>Langmuir parameters</term>
<term>Langmuir ratios</term>
<term>Liquid phase</term>
<term>Liquid phase breakthrough curves</term>
<term>Local equilibrium hypothesis</term>
<term>Macropores</term>
<term>Mass balances</term>
<term>Mass transfer</term>
<term>Mass transfer resistances</term>
<term>Material balance</term>
<term>Material balances</term>
<term>Matrix</term>
<term>Molar</term>
<term>Molar concentration</term>
<term>Molar fraction</term>
<term>Molar volume</term>
<term>Molar volumes</term>
<term>Molecule</term>
<term>Multicomponent diffusion</term>
<term>Mutual interaction</term>
<term>Nancy cedex</term>
<term>Other hand</term>
<term>Parameter</term>
<term>Parameter estimation</term>
<term>Pellet</term>
<term>Phase diffusion</term>
<term>Phase volume fraction</term>
<term>Phys chem</term>
<term>Pore radius</term>
<term>Porosity</term>
<term>Present model</term>
<term>Qsat</term>
<term>Reference frame</term>
<term>Saturation</term>
<term>Separation division</term>
<term>Silicalite</term>
<term>Simulation</term>
<term>Single component diffusion</term>
<term>Solid matrix</term>
<term>Surface diffusion</term>
<term>Tank reactors</term>
<term>Thermodynamic</term>
<term>Total concentration</term>
<term>Total number</term>
<term>Uxes</term>
<term>Vacant sites</term>
<term>Volume constraint</term>
<term>Volume constraints</term>
<term>Volume fraction</term>
<term>Volume fractions</term>
<term>Whole radius</term>
<term>Zeolite</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Additional constraints</term>
<term>Adsorbent</term>
<term>Adsorption</term>
<term>Adsorption equilibrium</term>
<term>Adsorption processes</term>
<term>Aiche</term>
<term>Aiche february</term>
<term>Aiche journal</term>
<term>Aiche journal february</term>
<term>American institute</term>
<term>Apparent inversion</term>
<term>Axial dispersion</term>
<term>Binary</term>
<term>Binary exchange diffusion</term>
<term>Binary mixture</term>
<term>Binary system</term>
<term>Binder ratio</term>
<term>Breakthrough</term>
<term>Breakthrough curve</term>
<term>Breakthrough curves</term>
<term>Breakthrough experiments</term>
<term>Breakthrough front</term>
<term>Chem</term>
<term>Chemical potentials</term>
<term>Coadsorption isotherm</term>
<term>Coadsorption isotherms</term>
<term>Constraint</term>
<term>Crystal radius</term>
<term>Cstr</term>
<term>Different isomers</term>
<term>Different molar volumes</term>
<term>Different saturation capacities</term>
<term>Different species</term>
<term>Diffusion</term>
<term>Diffusion equation</term>
<term>Diffusion process</term>
<term>Duhem constraint</term>
<term>Entropy effects</term>
<term>Experimental breakthrough curves</term>
<term>Experimental conditions</term>
<term>Experimental results</term>
<term>Experimental setup</term>
<term>February</term>
<term>Feed composition</term>
<term>Generalized langmuir</term>
<term>Genie chimique</term>
<term>Global material balance</term>
<term>Hexane isomers</term>
<term>Imsl library</term>
<term>Isomer</term>
<term>Isotherm</term>
<term>Jolimaitre</term>
<term>Krishna</term>
<term>Langmuir</term>
<term>Langmuir isotherm</term>
<term>Langmuir parameters</term>
<term>Langmuir ratios</term>
<term>Liquid phase</term>
<term>Liquid phase breakthrough curves</term>
<term>Local equilibrium hypothesis</term>
<term>Macropores</term>
<term>Mass balances</term>
<term>Mass transfer</term>
<term>Mass transfer resistances</term>
<term>Material balance</term>
<term>Material balances</term>
<term>Matrix</term>
<term>Molar</term>
<term>Molar concentration</term>
<term>Molar fraction</term>
<term>Molar volume</term>
<term>Molar volumes</term>
<term>Molecule</term>
<term>Multicomponent diffusion</term>
<term>Mutual interaction</term>
<term>Nancy cedex</term>
<term>Other hand</term>
<term>Parameter</term>
<term>Parameter estimation</term>
<term>Pellet</term>
<term>Phase diffusion</term>
<term>Phase volume fraction</term>
<term>Phys chem</term>
<term>Pore radius</term>
<term>Porosity</term>
<term>Present model</term>
<term>Qsat</term>
<term>Reference frame</term>
<term>Saturation</term>
<term>Separation division</term>
<term>Silicalite</term>
<term>Simulation</term>
<term>Single component diffusion</term>
<term>Solid matrix</term>
<term>Surface diffusion</term>
<term>Tank reactors</term>
<term>Thermodynamic</term>
<term>Total concentration</term>
<term>Total number</term>
<term>Uxes</term>
<term>Vacant sites</term>
<term>Volume constraint</term>
<term>Volume constraints</term>
<term>Volume fraction</term>
<term>Volume fractions</term>
<term>Whole radius</term>
<term>Zeolite</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Simulation</term>
</keywords>
<keywords scheme="mix" xml:lang="fr">
<term>adsorption</term>
<term>adsorption • liquid phase • diffusion • mixtures • zeolites • modeling</term>
<term>diffusion</term>
<term>liquid phase</term>
<term>mixtures</term>
<term>modeling</term>
<term>zeolites</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="fr">This work provides a new mass transfer model based on the Maxwell–Stefan theory, especially adapted to represent adsorbed phase multicomponent diffusion at high‐adsorbent loading. In our model—contrarily to the well‐known model developed by Krishna et al. (Chem Eng Sci. 1990;45:7:1779–1791; Gas Sep Purif. 1993;7:91–104; J Phys Chem B. 2005;109:6386–6396)—the hypothesis that the micropores are saturated does not imply a dependency between the adsorbed phase diffusion coefficients. Experimental liquid phase breakthrough curves of 2‐methylpentane (2MP), 3‐methylpentane (3MP), 2,3‐dimethylbutane (23DMB), and 2,2‐dimethylbutane (22DMB) were measured at 458 K in silicalite. The self‐diffusion coefficients and Langmuir parameters of the different species were determined using binary exchange breakthrough curves. The Maxwell–Stefan diffusion coefficients obtained for the different isomers are in the order D3MP,nc+1 > D2MP,nc+1 ≫ D23DMB,nc+1, and vary between 4 × 10−15 m2 s−1 for 3MP to 6 × 10−16 m2 s−1 for 23DMB. The 22DMB diffusion coefficient is so low that it could not be estimated (the quantity of 22DMB entering silicalite during the experiment is not significant). The model was then validated by comparing experimental breakthrough curves at different feed concentrations and simulations using the independently estimated parameters. Even though the diffusion coefficients of the different isomers vary by one order of magnitude, the agreement between simulated and experimental curves is very satisfactory, showing the good predictive power of our model. © 2010 American Institute of Chemical Engineers AIChE J, 2011</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Grand Est</li>
<li>Lorraine (région)</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Nancy</li>
<li>Vernaison</li>
</settlement>
<orgName>
<li>Centre national de la recherche scientifique</li>
<li>Laboratoire réactions et génie des procédés</li>
<li>Université de Lorraine</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Lettat, Kader" sort="Lettat, Kader" uniqKey="Lettat K" first="Kader" last="Lettat">Kader Lettat</name>
</region>
<name sortKey="Jolimaitre, Elsa" sort="Jolimaitre, Elsa" uniqKey="Jolimaitre E" first="Elsa" last="Jolimaitre">Elsa Jolimaitre</name>
<name sortKey="Jolimaitre, Elsa" sort="Jolimaitre, Elsa" uniqKey="Jolimaitre E" first="Elsa" last="Jolimaitre">Elsa Jolimaitre</name>
<name sortKey="Jolimaitre, Elsa" sort="Jolimaitre, Elsa" uniqKey="Jolimaitre E" first="Elsa" last="Jolimaitre">Elsa Jolimaitre</name>
<name sortKey="Lettat, Kader" sort="Lettat, Kader" uniqKey="Lettat K" first="Kader" last="Lettat">Kader Lettat</name>
<name sortKey="Tayakout, Melaz" sort="Tayakout, Melaz" uniqKey="Tayakout M" first="Mélaz" last="Tayakout">Mélaz Tayakout</name>
<name sortKey="Tondeur, Daniel" sort="Tondeur, Daniel" uniqKey="Tondeur D" first="Daniel" last="Tondeur">Daniel Tondeur</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:DE357E5B4F327443768073C601669EEFFB872C97
   |texte=   Liquid phase diffusion of branched alkanes in silicalite
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024